Journal of Organometallrc Chemistry, 65 (1974) 303-310 \odot Elsevier Sequoia S A, Lausanne - Printed in The Netherlands

RELATIVE MIGRATORY ABILITIES OF METALS FOR CYCLOPENTADIENYL AND INDENYL LIGANDS

Yu N LUZIKOV, N M SERGEYEV and Yu.A. USTYNYUK

NMR Laboratory, Chemrcal Deparfment, Moscow State Unwersdy, 117234, MOSCOW (USSR)

(Received June 12th, 1973)

Summary

The ¹H and ¹³C $-$ {¹H} NMR spectra of the fluxional molecules $C_9H_7S_1$ $(CH_3)_3$, $C_9H_7Ge(CH_3)_3$, and $C_9H_7Sn(CH_3)_3$ have been studied over a wide range of temperatures The metal atom in the indenylgermane migrates through **a 1.2 shift. This is shown by isolation of the Diels-Alder cycloaddition adducts of tms compound wrth the dlenophlles tetracyanoethylene, maleic anhydrrde** and acetylene dicarboxylate. The thermodynamic characteristics of metallo**tropic mrgratron m the Group IVB mdenyl derivatives show that the drfference between the free energres of actrvatlon of mdenyl and the correspondmg cyclopentadienyl compounds m each case 1s close to 8.5 kcal/mole. New** parameters, μ and r_a , characteristic of the fluxional behaviour of some organometallic compounds have been introduced, and some predictions based on **these parameters have been made.**

Many papers on organometalhc fluxronal molecules have dealt with the determmatlon of the mechamsm governing the shift of the metal over the orgamc hgand [1,2] . **Some mterestmg results have been obtamed (3,4] from comparison of the fluxronal behavrour of cyclopentatienyl and mdenyl compounds The mvestlgations showed that mdenyl systems, as a rule, undergo** migration at temperatures substantially higher than those for the corresponding **cyclopentadienyl compounds. This fact may be mterpreted, according to Cotton et al. 143,** as **bemg due to the 1,2-shift of the metal m mdenyl compounds** leading to an energetically-unfavourable, short-lived isoindenyl intermediate*, **which may be isolated usmg the Duels-Alder reaction [6,7]. This type of fluxronal behaviour m molecules may be termed quasidegenerate [8]** .

Earher, Davrson and Rakita [9] studied the temperature-dependent PMR

^{*} HMO estunates of the **z-electron** energy **deference between indene and wmdene structures gwe a** value of ca. 9 kcal/mole [5]

PMR (100 MHz) PARAMETERS OF THE ORGANOMETALLIC INDENYL DERIVATIVES² TABLE₁

 $\mathbf{\tilde{N}}$

 \sim

304

spectra of indenyl compounds of silicon, germanium and tin and showed that these compounds were subject to an intramolecular metallotropic rearrangement proceeding via apparent 1,3-shift. Later [10] they estimated the activa**tion parameters for phenyldimethylsrlyl- and phenyldimethylstannyl-mdene In our prevrous paper [ll] we used 13C NMR techniques* to study the fluxronal behavrour of trimethylstannyhndene.**

The similarity of fluxional behaviour in the indenyl and cyclopentadienyl series prompts us to attempt the search for a quantitative relationship. We now **present results of a comparative analysrs of the activation parameters for Group** IVB metal migration in each series by using 1 H and 1 ³C NMR spectroscopy.

Results and discussion

Table 1 summarises results of PMR mvestigations on trimethylsilyl- (I), trimethylgermyl- (II) and trimethylstannylindene (III). Although our data are **qmte close to those given m the literature some newer facts are worth** discussing. (i) Above the coalescence temperature (ca. 60^o), the temperature**dependent PMR spectrum of (III) exibits unsymmetrical broadenmg of the** ^{117,119} Sn satellites (the high-field satellite broadens substantially faster than **the low-field one). This is possibly due to the mequahty of the couphng** constants^{- 2}J(^{117,119} Sn-H₁) > ⁴J(^{117,119} Sn-H₃) It is known that both **couplmg constants are positive [lo]. Analogous spectral patterns have been observed previously for ¹⁹⁹Hg [14] and ¹¹''¹¹⁹Sn [8] satellites in the PMR spectra of cyclopentadienyl compounds (n) Saturation transfer techmques [15] may be used for assignment of the signals It is worthwhile to note that** during the irradiation of the methine proton signal (H_1) , the signals of both olefinic protons $(H_2$ and H_3) disappear from the spectrum of indenyltin (III). This may be explained on the basis of mixing the spin states of H_2 and H_3 nuclei owing to their strong spin-sping coupling [16]. (iii) At temperatures **above 150" several additional signals appear in the PMR spectrum of (II). These signals may be attributed to the products of hydrogen mlgratron, a process which has been found previously m the sllyl compound (I) [S] Integration of** the methyl proton signals resulted in the following isomer percentages['] (II) **(82%), (IIA) (12%), (IIB) (6%) Irreversible changes were found m its PMR spectrum after (III) had been heated for several hours, however, these changes** are probably due to Sn-C bond cleavage in (III) rather than to a prototrop**rcrearrangement** (IV) Spin-spin coupling constants between H₃ and one of the **aromatic protons are readily found in the PMR spectra of (I) - (III)** (Table 1)**

We also isolated the Duels-Alder cycloaddltion adducts of trimethylgermylmdene usmg tetracyanoethylene, malerc anhydnde and acetylene dicarboxylate as dienophiles. This establishes a 1,2-migration of the metal in the **compound (Scheme 1). Attempts to isolate an lsomdenyl mtermedlate for (III) were unsuccessful; we found only Sn-mdenyl bond cleavage, accompanied by formation of a product containmg both dienophrle and trimethyltm group.**

^{*} This technique was found to be quite promising in a study of the various dynamic phenomena **11% 131**

Complete analysis of the PMR spectrum of the unsubstituted indene gives almost all the possible couplings between protons (the results are now in preparation).

 α_{The} shifts are in ppm relative to TMS with an accuracy of \pm 0 05 ppm $^{\circ}$ PR, t = room temperature

TABLE 3 Ĥ

i,

TABLE 2

TABLE 2

CARBGN CHEMICAL SHIFTS FOR SOME INDENYL COMPOUNDSa

Ż.

ő

 \sim

 \mathbf{c}

G 4

> \mathcal{P} ৺

CARBON CHEMICAL SHIFTS FOR SOME INDENYL COMPOUNDS^G

.

Exact determination of the activation parameters of the exchange pro**cesses requires total lme shape analysis or even the more elaborate denslty**matrix methods (in the case of the strong spin-spin coupling) to be used [17] These difficulties may be overcome by using temperature-dependent ¹³C NMR **spectra (completely proton decoupled) m the manner already demonstrated for compound (III) 1111.**

Slmllar measurements were made for the compounds (I) and (II). Carbon chemical shifts for both $C_9H_7M(CH_3)$ ₃ (M = Si, Ge, Sn) under stereochemical**ly ngrd condltlons, and unsubstituted mdene, are hsted m Table 2.**

Lme shape analysis was performed by use of a 620/f Vanan computer with a program wntten for the equations given previously for the two-site exchange [18].

The carbon-13 spectra of (I) and (II) also showed additional signals when these compounds were heated at temperatures above 150" ; **the signals should be attributed to the vinyhc isomers. The assignment of the signals to the mdrmdual isomers (see Table 3) is based on the followmg: (1) off-resonance** techniques, (ii) deshielding effect of the metal group on the olefinic carbons, **and (ui) ; ompanson of the data with that established for allyhc isomers and unsubstituted indene.**

Temperature-dependent PMR spectra were also used m the calculation of the activation parameters; approximate formulae were apphed m this case [compounds (II) and (III)] Spm-spm couphng effects were taken into account by the effective spin-spin relaxation time constant, $T₂$.

The thermodynamic parameters of the metallotropic rearrangements m the *σ*-indenyl and *σ*-cyclopentadienyl compounds of silicon, germanium and tin **are listed m Table 4.**

It is worth emphasizing that the difference between the free energies of activation of indenyl and the respective cyclopentadlenyl compound m each case is close to 8.5 kcal/mole, which 1s quite similar to the HMO-estimate This strikingly constant value prompts us to introduce a new parameter μ , the *mzgratory aptitude* **of a metal as follows:**

$$
\mu = \lg k_{\rm M}^{300} / k_{\rm H}^{300} = 0.43 / RT \left(\Delta G_{\rm H}^{\ddag} - \Delta G_{\rm M}^{\ddag} \right)
$$

where $\Delta G_{\rm M}^{\dagger}$ and $\Delta G_{\rm H}^{\dagger}$ are the free energies of activation for metal and hydrogen migration in cyclopentadienyl compounds, respectively; k_M^{300} and $k_{\rm H}^{300}$ refer to the corresponding rate constants at 300 K. We have used the value 24.2 kcal/mole for hydrogen migration in C_5H_6 taken from the data of Roth [19], and corrected for the primary isotope effect. The data available (see Table 4) lead to values of migratory aptitudes which vary from $+12.4$ (tin) to -12.6 (carbon) (Table 5) and increase over the series. $\mu_C < \mu_H = 0.00$ $\mu_{S1} < \mu_{Ge} < \mu_{Sn}$ It is very interesting to note that the same tendency may be established by quantitative analysis of keto-enol tautomerism studied for Group IVB elements (see, for example, ref. 20 for a review), even in non-degenerate cases.

We may also introduce a parameter to account for the relative ability of a ligand to facilitate metal migration, for example:

 $r_{\rm a} = -0.43/RT \left[\Delta G_{\rm M}^{\ddagger} \left({\rm hgand} \right) - \Delta G_{\rm M}^{\ddagger} \left({\rm cyclopentadienyl} \right) \right]$

TABLE 4

CHARACTERISTICS OF THE METALLOTROPIC REARRANGEMENT IN 5-CYCLOPENTADIENYL AND 5-INDENYL DERIVATIVES OF THE GROUP IVB METALS

Compound	Parameters					Note
	$E_{\rm a}$ (kcal/mole)	log A	$\Delta S^{\ddagger}{}_{300}$ (cal/mole·K)	ΔG^{\ddagger} ₃₀₀ (kcal/mole)	$T_{\vec{c}}^a$ _C	
$C_5H_5S_1(CH_3)$	130 ± 10	113 ± 10	-92 ± 4	152 ± 02	-23	\mathbf{H}
$C_5H_5Ge(CH_3)_3$	92 ± 10	99 ± 10	-158 ± 40	133 ± 10	-73	\mathbf{H}^c
	107 ± 09	109	-110	134 ± 09	-62	$13_C d$
$C_5H_5Sn(CH_3)$ 3	78±10	138 ± 10	$+2$ ± 4	66±10	-152	$1_{\mathbf{H}}$ c
	68 ± 07	126	-27	71 ± 07	-157	13 C ^d
$C_9H_7St(CH_3)_3$	224 ± 10	117 ± 05	-69 ± 21	238 ± 01	142	13 C
$C_9H_7Ge(CH_3)_3$	182 ± 05	103 ± 02	-137 ± 11	216 ± 01	110	'H(100 MHz)
	184:04	103 ± 02	-137 ± 09	218 ± 01	115	13 c
$C_9H_7Sn(CH_3)_3$	120 ± 03	104 ± 02	-132 ± 08	153 ± 01	-22	H(100 MHz)
	121 ± 02	106 ± 02	-122 ± 08	151 ± 01	-25	H(60 MHz)
	127 ± 04	110 ± 03	-105 ± 13	152 ± 01	-22	13 C

 a_T = temperature at which migration rate k is equal to 1 sec⁻¹ b_{Ref} 24 CRef 8 dRef 26

TABLE 5

^aFor calculation of μ and $\Delta(\Delta G^{\ddagger}_{300})$ we used the average values of the literature and our present data $\Delta(\Delta G^{\ddagger}_{300}) = \Delta G^{\ddagger}_{300}$ (indenyl) – $\Delta G^{\ddagger}_{300}$ (cyclopentadienyl)

The previous analysis with mdenyl as the hgand showed that the *r,* **factor was** constant and equal to -6.0 indicating the more limited non-rigidity of the **mdenyl series. Thrs approach allows some predictions to be made. For example,** the free energy of activation of mercury migration in the cyclopentadienyl **bgand may be expected to he ca. 5 kcal/mole, which may be correlated with the low-temperature measurements by West et al. 1141. Another test is the prediction of the free energy of activation for the iron mdenyl which should be** more than 20 kcal/mole, and this agrees with the data of Cotton et al. [3].

One rather novel example of the fluxlonal behavrour 1s presented by Group IVB pyrazole demvatlves. Data recently obtamed m thus laboratory 1251 allows the estimation of the pyrazole ligand r_a factor. This is found to be -4 0, thus the pyrazole ligand may be considered to support metal migration more **than mdenyl but less than cyclopentadienyl.**

Experimental

PMR spectra of (I), (II) and (III) were measured on JNM - C - 60HL (JEOL), HA - 1OOD (Varian) and XL - 100 - 15 (Varlan) spectrometers. The 1 3 C- {I H] -FT spectra of these compounds were measured on an XL - 100 - 15 (Vanan) instrument at 25.2 MHz for carbon nuclei, 12 mm 0-d. sample tubes were used. The temperature was controlled to within $\pm 1^{\circ}$. Spectra were **measured on neat liquids.**

The PMR spectrum (100 MHz) of (IV) is characterized by the followmg data: δ 7 52 (multiplet, AA'BB', aromatic); and 4 85 ppm (doublet, H_1 and **H₃**), $J_{\text{(HH)}}$ 1.17 \pm 0.05 Hz, δ 2.33 ppm (triplet, H₂), $J_{\text{(HH)}}$ 1.17 \pm 0.05 Hz; δ **0.00 ppm (smglet, CH,). (Found: C, 60.10, H, 4.49; Ge, 20.29, N, 15.42 C1sH1sNqGecalcd.. C,6000;H,4 67;Ge,20.ll,N, 15.52%)**

Acknowledgement

We wish to thank Dr. Yu K. Grishin for helpful discussions.

References

- **1 F A Cotton. Accounts Chem Res , l(l968) 257**
- 2 N.M Sergeyev, in J Emsley, J Feeney and L.H Sutchffe (eds), Progress in NMR Spectroscopy, **Pergamoa Press. Vol 9. in press**
- **3 F A Cotton. A** Musco **and G Yagupsky. J Amer Cbem. Sot .89 (1967) 6136**
- **4 F.A Cottonand T J Marks J Amer Chem Sot ,91(1969) 3178**
- 5 C A Coulson and A Streitwieser. Jr. Dictionary of π -Electron Calculations, W.H Freeman, San **Franczsco. C&f, 1965**
- **6 R B Larrabee and B F Dowden, Tetrahedron Lett , (1970) 915**
- **7 A J. Aahe III. Tetrahedron Lett , (1970) 2105**
- **8 A V. KLSIII, V A Korenevskv, N.M Sageyev and Yu.A Ustvn~uk. J Organometal Chem** ,34 **(1972) 93**
- 9 A Davison and P.E Rakita, Inorg Chem . 8 (1969) 1164
- **10 A Damson and P E. Ralota, J Organometal. Chem ,21(1970)'55**
- 11 N.M Sergeyev, Yu K Grishin, Yu.N Luzikov and Yu.A Ustynyuk, J Organometal. Chem., 38 **12 Yu K *Grishin, N M * Sergeyev, O A * Subbotin and Yu.A Ustynyuk, Mol Phys , 25 (1973) 297
12 Yu K * Grishin, N M * Sergeyev, O A * Subbotin and Yu.A * Ustynyuk, Mol * Phys , 25 (1973) 297**
-
- **13 D J Clappenelb, F A Cotton and L Krucznxdu. J Organometal Chem** .42 (1972) 159
- 14 P West, M C. Woodville and M.D Rausch, J Amer. Chem. Soc., 91 (1969) 5649
- **15 R A Hoffman and S Forsen. Progress m NMR Spectroscopy. 1 (1966) 15**
- **16 BM Fung. J Chem Phys .49 (1968) 2973 17 G Bmsch. Top Stereochem .3 (1968) 97**

309

- 18 H.S Gutowsky and C.H. Holm, J. Chem. Phys., 25 (1956) 1228.
- 19-W.R Roth, Tetrahedron Lett , (1964) 1009
- 20 Yu.I. Baukov and I.F. Lutsenko, Organometal. Chem. Rev., Sect A, 6 (1970) 355.
- 21 S McLean and D.M. Findley, Can. J. Chem., 48 (1970) 3107.
- 22 F.A Cotton and T J. Marks, J Amer Chem Soc. 91 (1969) 7523.
- 23 C.H Campbell and M.L.H. Green, J Chem. Soc A, (1970) 1318
- 24 N.M. Sergeyev, G.I Avramenko, A.V Kism, V.A. Korenevsky and Yu.A Ustynyuk, J. Organometal. Chem , 32 $(1971) 55$

 \overline{a}

 $\gamma_{\rm g}$

 ϵ

 $\tilde{\mathbf{r}}$

- 25 V.N. Torocheshnikov and N.M. Sergeyev, J Organometal. Chem, in press
- 26 Yu K Grishin, N.M Sergeyev and Yu A Ustynyuk, Org Mag Res, 4 (1972) 377